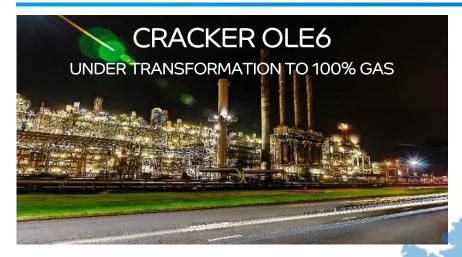
CHEMISTRY THAT MATTERS™

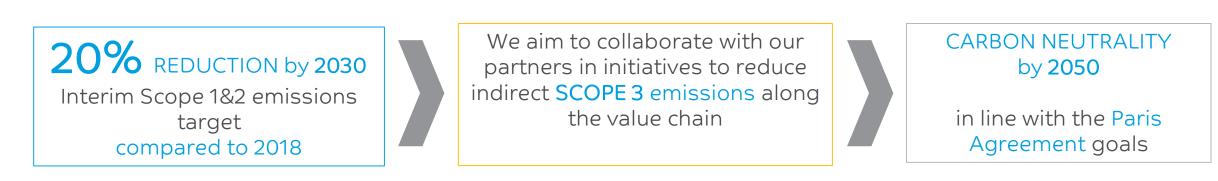
DECARBONISATION IN ENERGY INTENSIVE CHEMICAL INDUSTRIES – CASE STUDY


NEPIC CLEAN GROWTH CONFERENCE 20/9/22

J P Hetherington Snr Technical Manager

SABIC ON TEESSIDE

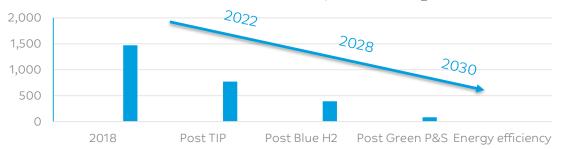
LDPE PLANT 400KTE COMPLETED BY SABIC IN 2009


TEESSIDE

ETHYLENE LOGISTICS SUPPLYING EUROPEAN ASSETS

SABIC'S CARBON NEUTRALITY ROADMAP AIMS AT FULL CARBON NEUTRALITY IN 2050

WHAT ARE WE CONSIDERING IN OUR 2050 CARBON NEUTRALITY ROADMAP?


				A
RELIABILITY, ENERGY EFFICIENCY & IMPROVEMENTS	RENEWABLE ENERGY	ELECTRIFICATIONS	CARBON CAPTURE	GREEN/BLUE H2
 Technology improvement Energy efficiency Asset improvement & reliability Asset rationalization 	 Increase renewable energy share in imported energy mix . Approved strategy of facilitating 4 GW by 2025 and . 12 GW installed capacity by 2030 	Using renewable energy Electrification of different steam driven rotating equipment Electric cracking furnaces for olefins and aromatic based products	 High concentration streams potential for utilization - Leveraging KSA CO2 Hub CCUS collaborations 	 Commercially available solutions and under early R&D

Note: Other greenhouse gases are included and converted into CO₂ equivalents according to the Greenhouse Gas Protocol.

WHAT DOES THIS MEAN FOR SABIC ON TEESSIDE?

Teesside Scope 1 & 2 CO₂ emissions post each Decarbonisation Step - KTA CO₂

Ethylene crackers have high energy intensity

– typically 18 GJoules to make 1 tonne of ethylene Note:

- 1te of Methane releases 2.75te CO2 when burned.
- 1te of hydrogen releases Ote CO2 when burned easy!!

Blue Hydrogen as fuel

- Blue Hydrogen Enabled by NetZero Carbon Capture & future phases of Hydrogen economy
- Can be integrated with SABIC operations
- Technology readily available compared to other options and can be implemented
- Solves Scope 1 emissions

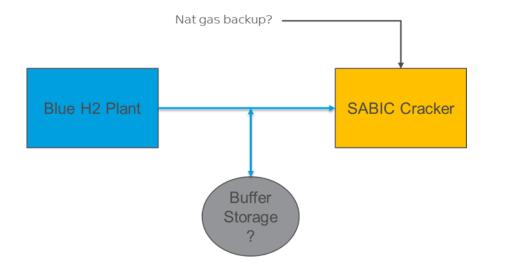
- Other options considered for decarbonisation
 - Electrification (of furnaces and other equipment)
 - Direct carbon capture
 - Renewable fuels for electricity/steam import (scope 2)

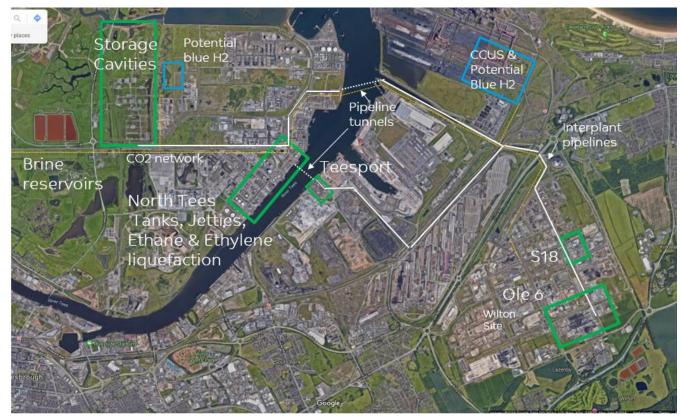
TECHNICAL CONSIDERATIONS

Burner Design

- Burners are available for 100% Hydrogen
- Fuel gas composition nat gas to 100% Hydrogen
- Ignition and Flame detection
- Effect on CO & NOx emissions
- Flame speed and pattern and effect on heat transfer
- Increased water vapour in flue gas
- Ongoing maintenance and cleaning

Fuel Gas System

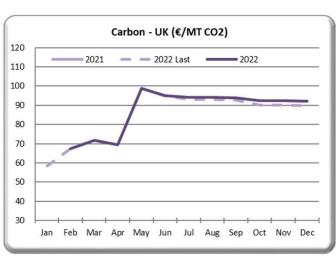

- Suitability of IBL fuel gas system to operate on hydrogen (eg flow velocities)
- Capability to operate on full range of nat gas/ hydrogen compositions


سیابک عن<mark>اله ک</mark>

INTEGRATION AND SUPPLY SECURITY

Supply Security

- Process industries are continuous operations
- Supply side reliability/availability is crucial
- 97% availability is not enough
- Resilience against short term interruption Buffer storage?
- Periodic Overhauls/Start up Nat Gas backup?



- Utilisation of piping corridors and networks
- Integration with CO2 CCS network

CONCLUSIONS

- Blue Hydrogen can offer the most implementable route for decarbonization on SABIC Teesside facilities
 - Technology is readily available, but needs demonstration
 - Enabled by NZT Carbon Capture & Blue Hydrogen facilities.
 - UK Govt commitment and funding is critical
 - Supply security & availability are crucial
 - H2 Pricing mechanism needs certainty
 - Hydrogen price delta vs nat gas + CO2 ETS costs must be economically viable
 - Fuel vs mobility vs feedstock use
 - Time to realization and exposure to ongoing cost of carbon major uncertainty
 - ETS CO2 price is rising while high volume industry allocations are falling.
 - 2018 it was ~E5/te. Now ~E90/te. Projections >E130/te
 - Proportion of free allocation to emissions will drop under UKGov commitments, further increasing cost of credits

THANK YOU

Je .