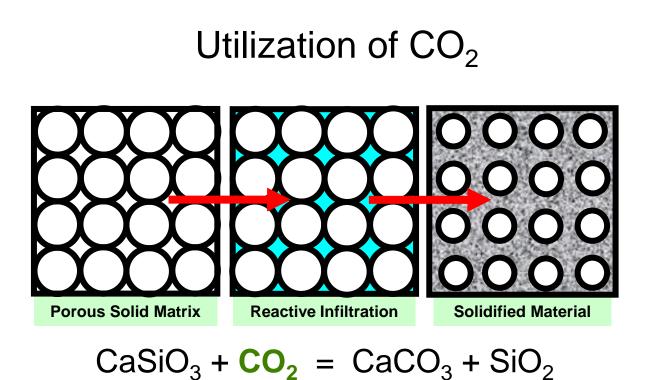


Carbonate Cement Concrete – A Driver for a Sustainable CO₂ Distribution Network


Richard Riman

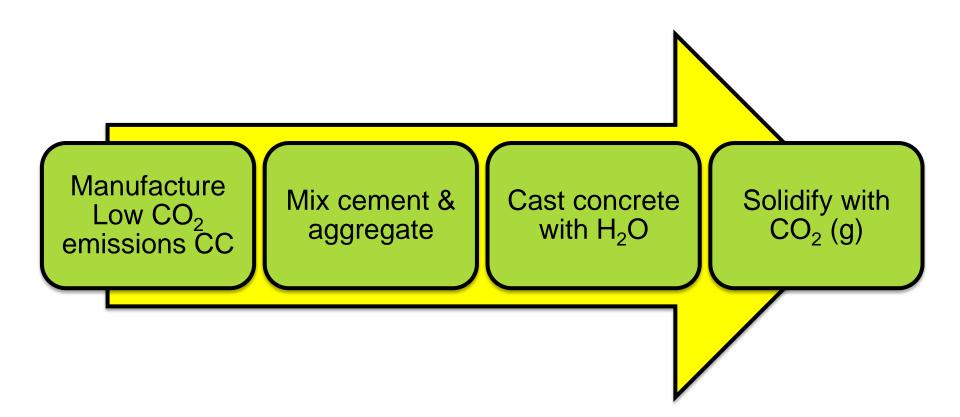
Distinguished Professor Department of Materials Science and Engineering riman@rci.rutgers.edu

CO₂ and Climate Change

- Power plants and vehicles are mostly responsible
- Portland Cement (PC) is next on the list the world's largest single industrial emitter of CO₂ 4 Bt/y
- Cement consumes 3 B gal/y of H₂O and cannot be easily deployed in arid environments
- PC concrete (PCC) is the second most widely consumed material in the world

Rutgers has solved the cement problem

1st commercially manufactured carbonate-bonded material


Why is this different from PCC?

- Carbonate cement (CC) and aggregate is packed and then solidified with CO₂
- CaSiO₃ is used instead of Ca₂SiO₄ and Ca₃SiO₅ for hardening
- Water is not consumed no hydration
- Carbonation reaction is easier to control and faster
- No shrinkage
- Stronger and more abrasion resistant
- More chemically durable

Similar to PC with more good differences

- CC can be made with same raw materials as PC
- Conventional cement mill can be used to produce CC
- Limestone content is ~30 % less than PC
- Lower purity grade limestone can be used
- Reaction temperature is 250°C lower
- More sustainable
 - 30 % less energy
 - -30 % less CO₂ emissions (before CO₂ curing)

How everything works together

Carbonate cement concrete

Paver Samples

Carbonate Concrete w/with PC Concrete

Derfermenes Chevesteristis1	HFC Concrete	FHWA HPC Performance Grade ¹			
Performance Characteristic ¹		1	2	3	4
Freeze/Thaw Durability (x = relative dynamic modulus of elasticity after 300 cycles)	≈87%	60% ≤ x ≤ 80%	80% ≤ x	NA	NA
Scaling Resistance (x = visual rating of the surface after 50 cycles)	0	x = 4,5	x = 2,3	x = 0,1	NA
Abrasion Resistance (x = avg. depth of wear in mm)	0.22±0.07	2.0 > x ≥ 1.0	1.0 > x ≥ 0.5	0.5 > x	NA
Chloride Permeability (x = coulombs)	776±50	3000 ≥ x > 2000	2000 ≥ x > 800	800 ≥ x	NA
Strength (x = compressive strength)	9482±920	$6,000 \le x < 8,000$	8,000 ≤ x < 10,000	10,000 ≤ x < 14,000	x ≥ 14,000
Elasticity (psi) (x = modulus of elasticity)	5.22 x 10 ⁶	$4x10^6 \le x < 6x10^6$	$6x10^6 \le x < 7.5x10^6$	x ≥7.5 x10 ⁶ psi	NA
Shrinkage (x = microstrain)	90	800 > x ≥ 600	600 > x ≥ 400	400 > x	NA
Creep (x = microstrain/pressure unit)	0.06 (@12 mon @3000 psi)	0.52>x>0.38	0.38>C>0.21	0.21	NA

¹ HIGH PERFORMANCE CONCRETE STRUCTURAL DESIGNERS' GUIDE, Federal Highway, 1st Editiion (2005).

Sustainability of commercial process

- CO₂ Savings
 - 4 billion tonnes of cement produced in 2015
 - Emits ~4 billion tonnes of CO₂
 - -70% CO₂ emission reduction = 2.8 billion tonnes/y
- Energy Savings
 - 4 Billion tonnes Cement at 4 GJ/tonne
 - 30% energy savings = 4.8 EJ/y
 - 2 20 gal fill ups for every car in the world
- Water Savings
 - 80% water savings of 3 trillion liters =2.4 trillion liters
 - Roughly a glass of water/day for everyone in the world $_{\rm 10}$

So...where do we get the CO₂?

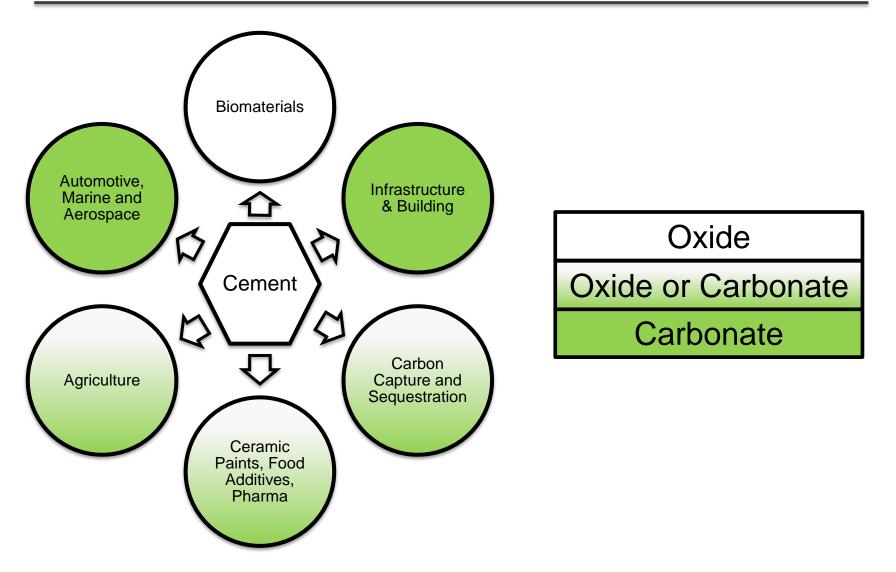
- CO₂ suppliers not enough!
 - 1 tonne of CC requires 200 kg CO₂
 - 4 Bt/y requires 800 Mt/y CO₂
- Storing CO₂ occupies large volume
- If CO₂ becomes a critical material, price will go up
- What are the options?
 - Power plants
 - Industrial waste
 - MSW & biomass

How do we store and handle the CO₂?

- Traditional gas and liquid handling methods
 - Use high CO2 concentration streams
 - Large scale compression capabilities
 - Additional purification needed
 - Limiting factor is where to store the gas
- Solid-state Storage
 - Adsorption methods have low capacity
 - Lots of room for innovation

Solid-state CO₂ capture, storage and supply (CCSS)

Capture & CaSiO₃ (s) + CO₂ (g) \rightleftharpoons CaCO₃ (s) + SiO₂ (s) Storage


Supply $CaCO_3(s) + SiO_2(s) \rightleftharpoons CaSiO_3(s) + CO_2(g)$

Reaction can go forwards and backwards infinitely

Game-changing green developments

- Make CaSiO₃ from CaCO₃ + indigenous materials
 - Can make anywhere in the world
- First fully recyclable ceramic without melting
 Rubble from tear downs can be used to build new buildings
- Solid-state methodology for capturing storing and supplying CO_2
- Huge reductions in water, energy, CO₂ and raw materials
- RRTC financed in April to commercialize solid-state CCSS

Driving more CO₂ Utilization

Public-Private Partnerships

