

Use Efficiency – A design paradigm for Green Innovations

NEPIC: Bioresources Conference, Sep. 22nd, 2016, Durham, UK

Dr. Anil Kumar – Tata Chemicals Limited

TATA CHEMICALS LIMITED

Innovation Centre, Tata Chemicals Ltd, Pune, India

Warm Autumn Greetings and Welcome

To

NEPIC Bioresources Conference Organizers

Members of NEPIC

Friends

Season of mists and mellow fruitfulness,
Close bosom-friend of the maturing sun;
Conspiring with him how to load and bless

- Ode to Autumn , John Keats

Context: Indians born in recent times will consume 13x more than their grandparents

Metric	Born in 1960	Born in 2009
Life Expectancy (years)	42	64
Per capita consumption at birth	\$241	\$802
Per capita consumption at death	\$531	\$6,190
Lifetime Consumption	\$14,645 13x	\$184,898

Growth in Multiple End Use Industries

Note: All figures in constant 2010 US\$ with a fixed 2010 exchange rate; Key assumptions: population growth flattens post-2050 and 3% GDP growth post-2020 Source: World Bank, United Nations Dataset

Cast of Characters

Renewables (Industrial Symbiosis) - Through Synergy

- Natural crop protection agents

Use Efficiency

(Overarching Design Paradigm)

(Renewables – Industrial Symbiosis

.

Low Carbon technologies)

Renewables (Industrial Symbiosis) – Waste to Value – Novel Nanomaterials

- Nutraceutical Formulations

Low Carbon technologies - Multi-functional materials

- Fuel cell

Synergy leading to use efficiency

- Tea Crop loss due to pests is around 30 to 40% annually
- Coffea arabica is on the verge of extinction in India due to white stem borer
- Promote ecological agriculture (Rain Forest Alliance)
- NPM in tea & coffee production in India.
- Gradually eliminate the use of chemical pesticides
- Develop commercially viable portfolio of bio-pesticides for tea



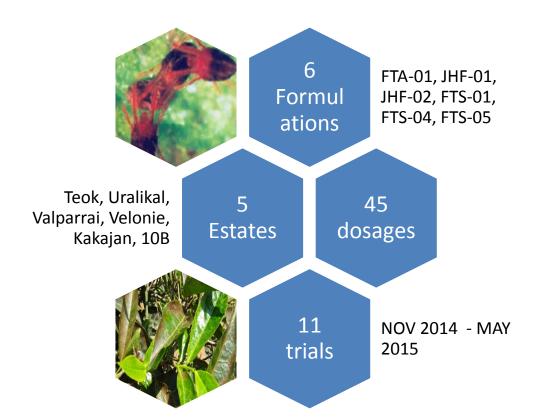
Red Spider mite
Oligonychus coffeae

Tea mosquito bug

Chemistry Inside

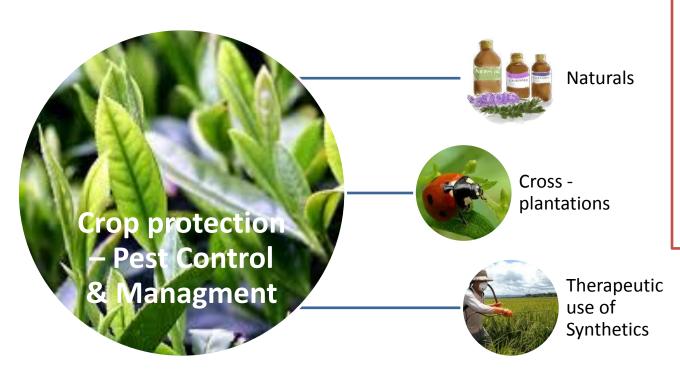
Biomimetic Chemistry:

- (A) Multiple targeting Develop a mix of actives targeting different enzymes (biochemical pathways) in the pest
- (B) Mix of anti-feedants, inhibition of larval ecdysis & repellents
- (C) Formulation (Adjuvant formulation) to stabilize the actives
- (D) Principles of vrksayurveda, to enhance plant defence



IC formulation, NA-01@1700ml/ha has recorded about 50% reduction of red spider mite incidence in comparison with UTC at 7 days interval.

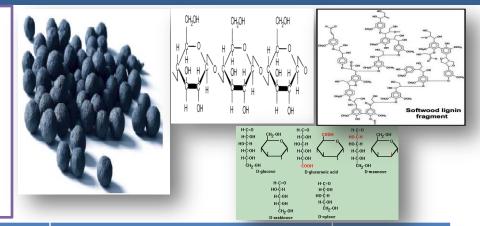
Synopsis of trials for RSM



PLANTATION	FTS -01 highest bio-efficacy for RSM	Remarks
KDHP	72.2%	7 days after 2 nd Spray
TATA COFFEE (Annamalais)	85.5%	10 days after 3 rd spray
APPL	68.6%	10 days after 2 nd spray

Multi-locational trials demonstrate that NA – 01 displays a definite biopesticidal action on Red Spider Mites

Combination of - (i) cross plantations (with host plants for natural predators), (ii) using Naturals & once in a while (iii)therapeutic use of synthetics is recommended



A fundamental shift to a total systems approach for crop protection is urgently needed to resolve escalating economic and environmental consequences of combating Agricultural pests

Tata Group Co-development – Alternate cost effective materials

- ❖ Tata Steel processes 15,000 18,000 tons/day of iron ore for pelletization
- Present bentonite binder is 0.4 % w.r.t iron ore (required 40-60 Tons/day)
- Currently acceptable level of impurities is 2 to 2.1 % of Si & Al
- ❖ Na Bentonite consists of silica and alumia (SiO₂ 66.7%, Al₂O₃ 28.3%, H₂O 5%)

Sr.No	Organic binder	Source	Backbone unit	Cost Kg/Rs.
1	Chitin	crabs, lobsters, shrimps and insects.	Glucosamine	200-300
2	Groundnut shell powder	Groundnut shell	Cellulose (35%), Hemicellulose (18%) Lignin	7-10
3	NaCMC	Wood constituents, Cotton fiber	Glucose	80-100
4	S-free Lignin	Wood constituents, paper & pulp industry	Coniferyl alcohol, Sinapyl alcohol, p-Coumaryl alcohol units	30-40
5	Gum Karaya	dried exudates of the sterculia urens tree (limited)	D-galactose,L-rhamnose, D-glucoronic acid and D-galacturonic acid	200-300

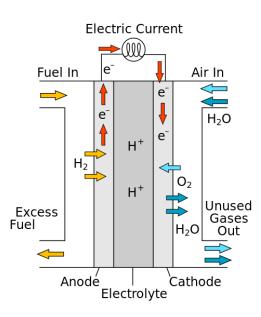
Alternate binder option are being explored to reduce impurities such as Na, Si, Al, S & P due to depleting ore quality

Groundnut Shell Powder is a good substitute (in parts) for bentonite

Exp. No	Bentoni te %	CMC %	GRN %	Lignin %	GCS Kg/pellet	DCS Kg/Pellet (>2.5Kg/pellet)	°C	t min	CCS Kg/pellet	RI (>65%)	TDI (<28%)
Α	0.4	0	0	0	1.67	6.93	1300	7	307.07	85.82	18.2
В	0.3	0.1	0	0	1.47	3.22	1300	7	291.43	83.58	19.2
С	0.3	0	0.1	0	1.86	5.41	1300	7	333.99	82.84	14
D	0.3	0	0	0.1	1.63	4.01	1300	7	297.52	82.84	14.8
E	0.2	0.2	0	0	0.61	2.66	1300	7	237.61	ND	ND
F	0.2	0	0.2	0	1.5	3.74	1300	7	310.22	87.31	15
G	0.2	0	0	0.2	1.54	3.37	1300	7	299.7	85.82	15.4
Н	0.1	0.3	0	0	ND	ND			ND	ND	ND
ı	0.1	0	0.3	0	1.52	2.68	1300	7	329.32	76.87	15.2
J	0.1	0	0	0.3	1.69	2.52	1300	7	324.27	79.11	21.6
K	0	0	0.2	0	1.55	2.84	1300	7	284.75	82.09	15.2
L	0.2	0.1	0	0.1	0.87	2.26	1300	7	279.27	86.57	8.8
M	0.2	0	0.1	0.1	1.63	3.58	1300	7	346.47	82.84	16.8

India
cultivates
about 7.74
million
hectares and
produces 7.61
million tonnes
of groundnut
pa (1.9 million
tonnes pa of
shell)

GRNS emerged as a path-breaking discovery because of naturally occurring in-built cellulose and lignin with minimal non-desirous elements


Multi-functional materials – An innovative approach to develop cost efficient FC

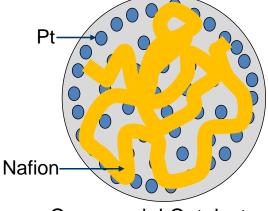
Advantages

- The most efficient way of converting energy Fuel to Electricity
- Efficiencies: ~ 40 60% as standalone systems & up to 90% as part of a CHP system
- Zero emissions at point of use with clean fuels.
 - Emissions are a major driver. Indian cities are some of the most polluted globally
- Excellent NVH characteristics
 - Will become increasingly important when electricity is needed domestically or when used in urban or sub-urban areas
- Greater reliability, longer life and lower maintenance than ICE gen-sets

Technology Challenges

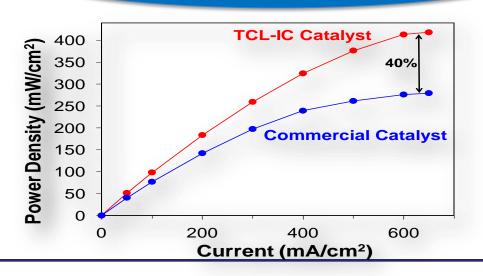
- Cost: Gradually falling costs so new markets becoming commercially viable
 - Substantial grants & incentives to support development and to drive adoption
- Reliable Sub System, use of hydrogen problematic and alternative fuels expensive or difficult & form factor

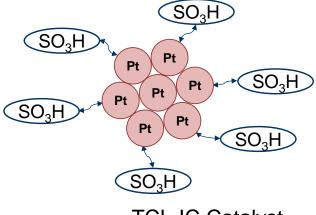
Multi-functional materials – A two-in-one catalyst for PEM Fuel cell


Electrode catalyst

- Reduce Pt content
- Increase efficiency and durability
- Minimize CO poisoning
- Replace Nafion

Objectives


Membrane


- Replace Nafion
- Increase efficiency and durability
- Cost reduction
- High temperature operation

Commercial Catalyst

Significant cost reduction of MEA and stack – viable for commercialization

TCL-IC Catalyst

TATA CHEMICALS LIMITED

Significant cost reduction due to reduced catalyst (Pt) loading

Highly monodisperse Pt NPs coated with –SO₃H groups

Transparent mixed oxides containing –SO₃H groups

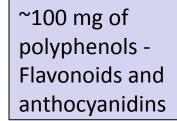
TCL-IC MEA

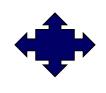
- –SO₃H groups act as proton conductor
- Protects Pt NPs from agglomeration and deactivation
- Low or zero Nafion content as binder in electrode
- 25% reduction in Pt content compared to commercial catalysts
- Higher durability, efficiency and consistency than commercial Pt/C catalysts

- –SO₃H groups act as proton conductor
- Negligible methanol crossover
- Operates at both low (<80 °C) and high (120 °C) temperatures
- Complete replacement of Nafion
- Higher thermal stability, mechanical strength and proton conductivity, than commercial membranes

 Combined cost reduction due to improved performance, Pt content and Nafion would be ≥30%

Stabilised GTE - Goodness of Green Tea in Beverages & Fruit Drinks




Improving bioavailability & stability – More from Less

Growing Consumer Awareness on Green Tea health benefits (anti-ageing & good for T2D)

Anti-Oxidant Property

1.2-1.5 g Green Tea Leaves for 100 ml Tea Serving

~200 mg Vitamin` C or ~500 mg Vitamin E

TRIGGERS

Increasing category
awareness

Soothing & Convenient
Gentle format

Wellness Easy to
on the rise digest

Detox Weight
Control

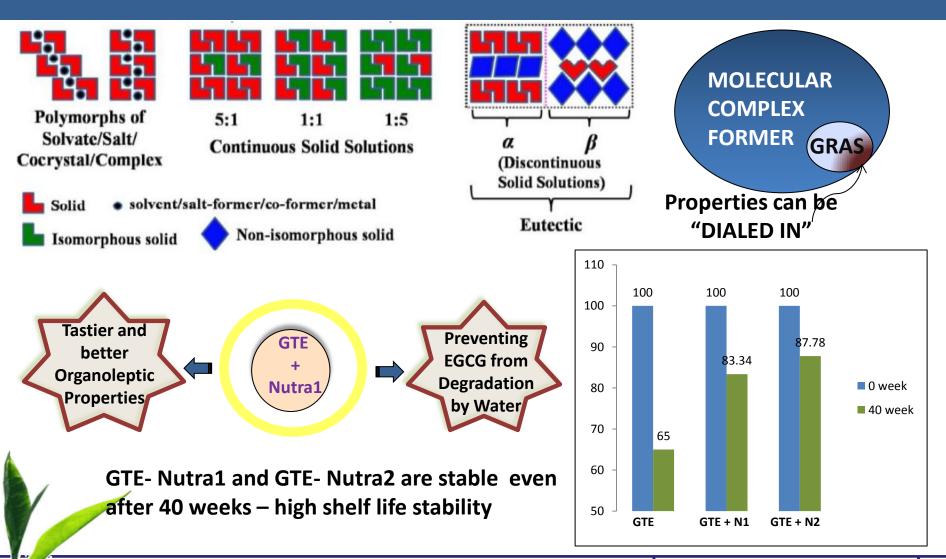
Positive
WOM

BARRIERS

Low availability

Low social Low on relevance promotions

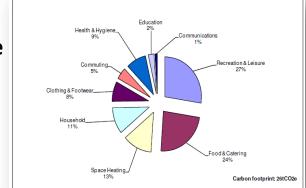
Taste


Green Tea Polyphenols are fastest growing in Tea Market at 8.3 % CAGR between 2013-2020

TATA CHEMICALS LIMITED

Stabilised EGCG - Goodness of Green Tea in Beverages & Fruit Drinks

Chemistry Inside – Less energy intensive process steps



Time is an important resource, there is a direct correlation of time with carbon emissions

➤ Carbon dioxide emissions (CO2), metric tons of CO2 per capita is **1.6987 MT** for India (2011) or **4.65 Kg of CO₂e per day**, while it is **9.66 MT or 26.45 Kg of CO₂e per day** for UK, and **17 MT** or **46.5 Kg of CO₂e per day** for US

Carbon footprint of an average UK household is 26 tCO₂e

- Combined carbon footprint is approximately 10 tons
 CO₂e per household per year, that is about 32 Kgs of CO₂e per day
- ➤ Therefore, every day added leads to : **32 Kgs of CO₂e**, apart from the emissions that would arise due to work (factory, laboratory & office space)
- > Therefore it is critical that shortest path to discovery be taken

Time is an important resource, that needs to be given adequate attention

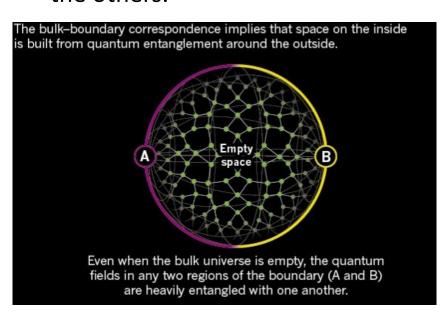
Industry	Idea to Market	Reference	
Automotive	3-4 years	PwC's Strategy&	
Pharmaceuticals	10-15 years	<u>Licensing Intelligence for</u> <u>Boehringer Ingelheim</u>	
Biotech Synthetic Biology	Approx 16 Years 7.4 years	"Biotech Crop Development" by Monsanto Lux research	
Chemical Product line extension New product launch	2-7 years 8–19 years	<u>McKinsey</u>	
Electronics	1-3 years	Book: Managing Projects in	
IT Software	1-2 years	Research and Development	
FMCG average	15-22 months	<u>BCG</u>	

Time has to be factored while assessing the "green chemistry" aspects of a process.

E-factor = total waste (kg) / product (kg) * weighted average of time spent.
Plausible Solutions:

Teams should be given Multiple projects in parallel, with a good mix of Short, Mid & Long

Term


Shortest path to goal has to be given attention

Key Message – Systems view of Life

Truly sustainable development is based on the recognition that we are an inseparable part of the web of life, of human and nonhuman communities, and that enhancing the dignity and sustainability of any one of them will enhance all the others.

- Fritjof Capra & Pier Luigi Luisi

A thing is right when it enhances the stability and beauty of total ecosystem. It is wrong when it damages it. The sustainability of a larger system comes first. Everything else must fit itself within that frame.

Quantum source of space and time - Nature Volume:527, Pages:290–293, November 2015, doi:10.1038/527290a

My Closing Message

The best place to look for a helping hand...

...is at the end of your arm

Thank You